Data modeling for h |
modern SQL applications: - REy
3NF? ARRAY?JSONB? -

Franck Pachot, Developer Advocate
@ yugabyteDB

Franck Pachot

Developer Advocate on YugabyteDB
(PostgreSQL-compatible distributed database)

fpachot@yugabyte.com
dev.to/FranckPachot
u @FranckPachot

Past:
20 years in databases, dev and ops
Oracle ACE Director, AWS Data Hero
Oracle Certified Master, AWS Database Specialty

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

Normalization

)
= stackoverflow Products

~_—

EalelinElrEliehllis generally used to either:] '
Home \
92 * Avoid a certain number of queries

PPPPPP -
* Remove some joins

® Questions
. The basic idea of denormalization is that you'll add redundant data, or group some, to be
= able to get those data more easily -- at a smaller cost; which is better for performances.
Use

| have heard a lot about normal forms at university
I've mostly heard about denormalization once at work

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

Normalization... why? Wrong answersonly

avoid data duplication because of the cost of storage
https.//www.mongodb.com/nosql-explained

According to MongoDB: ‘

According to DynamoDB:

same words: optimize of storage so not needed today .
AWS re:Invent 2018: Amazon DynamoDB Deep Dive

=) Relational theory, invented by a mathematician (Codd)
was driven by storage obsession?

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

https://www.mongodb.com/nosql-explained
https://youtu.be/HaEPXoXVf2k

Normalization... why? Better ask Codd

E F. Codd, Recent investigations in relational data base systems https/dl.acm.org/doi/10.1145/1734714.1734716 3. NORMALIZATION OF RELATIONS
https://purl.stanford.edu/ys277xx1104

listed. Perhaps the two most important are:

1. To reduce the need for restructuring the
collection of relations as new types of data
are introduced, and thus increase the life
span of application programs;

2. To reduce the incidence of undesirable
insertion, update, and deletion anomalies.

e Datalntegrity
(undesirable insertion, update and deletion dependencies)
o Agility
(reduce the need for restructuring as new type of data is added)
e Be moreinformative to users
e Logical - Physical independence

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

In [3,4] six aims of normalization of relations are

https://dl.acm.org/doi/10.1145/1734714.1734716
https://purl.stanford.edu/ys277xx1104

Normalization... How

Forget about normal forms...

e Separate the business concepts that can be queried / updated
independently in your system (*)
e Group intosame table those that are tightly linked

(*) Example: Address + ZIP code + City + Country
- may be attributes of same entity in social media application
- is probably normalized to multiple tables in a Post Office application

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

Denormalization... When

e Want a simple data structure, that will not evolve
“r microservice with one use case only

e Got theimpression that "Joins don't scale"
pre-join data for the main use-case

e Use more cheap storage? &
No! You will need more indexes and foreign keys on a normalized data model

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

Ok, enough theory... facts and examples

Let's build a messenger, with tags and groups
- apost from auser, with content, at timestamp
- ithasalistof tag id and a list of group ids

O

Access patterns:
- putapostinto the database, with all related information
- get posts by tag, ordered by last timestamp
- get posts by group, ordered by last timestamp

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

Relational design: Entities and Relationships

Let's build a messenger, with tags and groups
- apost from a user, with content, at timestamp
- ithasalistof tag id and a list of group ids

O

Primary keys: user id, tag id, group id, post _id
we will not detail reference tables here (users, tags, groups)
To record a post, we need the following tables:
- "posts" records (post_id) -> user _id, content, timestamp
- "post_tags" lists (tag_id, post_id)
- "post_groups" lists (group _id, post_id)

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

Relational design: Heap tables and B-Tree indexes

Get post by tag:

- index tag id -> table post_tags tid
- table post_tags tid -> (post_id, tag_id)
- index post_id -> table posts tid

- table posts tid -> (post _id, user id, content, timestamp)

To record a post, we need the following tables:

- posts to record (post_id) -> user _id, content, timestamp

- post_tags to list (tag id, post id)
- post_groups to list (group id, post_id)

g yugabyteDB

- — o= |
Wbsx ‘ INDEX (PK)

|
|

|
“ \TAG"ZE;) ™ POSTS_TAGS
L

| & T46_ID
9§ POST_ID

u @FranckPachot ~ © 2020 All Rights Reserved

\jOST_lD
Lo | & POST_ID
— || user_id
wmestam
conten

10

https://excalidraw.com/#json=bUiy0EOKntFKpgSf0dlIy,Vl_6mnonEa0ghM_B7bLG4A

Relational design: Index Organized Tables (LSM Trees)

Get post by tag: g

- primary index on post_tags tag id-> post _id
- primary index on posts post_id -> (post, user_id, content, timestamp)

To record a post, we need the following tables:
- posts to record (post_id) -> user _id, content, timestamp

POSTS

- post_tags to list (tag id, post id) =
- post_groups to list (group id, post_id) Wg@w

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

11

https://excalidraw.com/#json=ijRJdtN0jgQQoaqh9cR4u,9OWnWC-7ZSk3ecZQ0HNztA

Single Table design: ARRAY

Do you need so many tables? g

- (post_id, tag_id)&(post_id, group id) can be stored as with each post _id
as (post_id) -> array of post_id's, array of group _id's

- but only if you can still lookup by tag id and group id PosTs

& POST_ID

user‘__id
'time,stamp

content
& 461> —|togst

To record a post, we need the following tables: N i
- posts to record (post_id) -> user _id, content, timestamp
- post_tags to list (tag id, post id)
- post_groups to list (group id, post_id)

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved 12

https://excalidraw.com/#json=UQuAFkJc1TGE0cFnbV3Th,jaInp-2LPjrM3VSzdcMWLQ

Single Table design: ARRAY

Do you need so many tables?

- (post_id, tag_id) & (post_id, tag_id) can be stored with each post_id
as (post_id) -> array of post_id's, array of group_id's

- but only if you can still lookup by tag id and group id

& POST_ID

user‘__id
'tiw\e,s'tamp
content

- tagsu
QTAG_ID groupsL]

table (post_id,user_id, content, timestamp, int[] group_ids, int[] tag_ids)
- index on posts using gin (group_ids)
- index on posts using gin (tag_ids)

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved 13

https://excalidraw.com/#json=UQuAFkJc1TGE0cFnbV3Th,jaInp-2LPjrM3VSzdcMWLQ

ARRAY....or JSON?

Do you need so many tables?
- (post_id, tag_id) & (post_id, tag_id) can be stored with each post_id
as (post_id) -> array of post_id's, array of group_id's
- but only if you can still lookup by tag id and group id

This can also be JSONB (and GIN index)

{
tags: [tagl, tag2?, ...],
groups: [groupl, group2, ...]
}

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved

14

Finally... it is not very different

If tables are stored in the index structure (like YugabyteDB LSM tree) g
< aGIN index references the row via the PK (hash)
=) like association table in a normalized model with FK

If tables are stored in heap tables (like PostgreSQL B-Tree)
- The GIN index references the row (tid)
=) faster than an association table?
Index Only Scan, Heap with Bitmap Scan optimizes the index-to-heap

g yugabyteDB [@FranckPachot © 2020 All Rights Reserved 15

Takeout

we have the choice: Table, ARRAY, JSONB
@ data integrity, performance, evolution
you must understand the access patterns

and think tables and indexes in the same way

(Y yugabyte © 2020 All Rights Reserve

Let's get a a bit more complex: demo

Access patterns:
- put apostinto the database, with all related informatig
- get posts by tag, ordered by last timestamp
- get posts by group, ordered by last timestamp

% Triggers & Stored
Procedures for pure data
integrity logic and performance

GIN + B-Tree (btree_gin extension)

| @ roanckpacnn - 0212 @|
custom table maintained by trigger

https://dev.to/yugabyte/triggers-stored-procedures-for-pure-data-integrity-logic-and-performance-1eh8

(Y yugabyteDB [7] @FranckPachot ~ © 2020 All Rights Reserved

17

https://dev.to/yugabyte/triggers-stored-procedures-for-pure-data-integrity-logic-and-performance-1eh8

fpachot@yugabyte.com
dev.to/FranckPachot
. @FranckPachot

Join us on Slack:
www.yugabyte.com/slack

Star us on GitHub:
github.com/yugabyte/yugabyte-db

@ yugabyteDB .

http://www.yugabyte.com/slack

