
© 2020 All Rights Reserved@FranckPachot
1

Data modeling for
modern SQL applications:
 3NF? ARRAY? JSONB?

Franck Pachot, Developer Advocate

Franck Pachot, Developer Advocate

© 2020 All Rights Reserved@FranckPachot

Franck Pachot

Developer Advocate on YugabyteDB
(PostgreSQL-compatible distributed database)

Past:
20 years in databases, dev and ops

Oracle ACE Director, AWS Data Hero

Oracle Certified Master, AWS Database Specialty

2

fpachot@yugabyte.com

dev.to/FranckPachot

@FranckPachot

© 2020 All Rights Reserved@FranckPachot

Normalization

3

I have heard a lot about normal forms at university

I've mostly heard about denormalization once at work

© 2020 All Rights Reserved@FranckPachot

Normalization... why? Wrong answers only 👇

4

According to MongoDB:
avoid data duplication because of the cost of storage
https://www.mongodb.com/nosql-explained

According to DynamoDB:
same words: optimize of storage so not needed today
AWS re:Invent 2018: Amazon DynamoDB Deep Dive

🤔 Relational theory, invented by a mathematician (Codd)
 was driven by storage obsession?

https://www.mongodb.com/nosql-explained
https://youtu.be/HaEPXoXVf2k

© 2020 All Rights Reserved@FranckPachot

https://dl.acm.org/doi/10.1145/1734714.1734716
https://purl.stanford.edu/ys277xx1104

Normalization... why? Better ask Codd

5

● Data Integrity

 (undesirable insertion, update and deletion dependencies)

● Agility

(reduce the need for restructuring as new type of data is added)

● Be more informative to users

● Logical - Physical independence

https://dl.acm.org/doi/10.1145/1734714.1734716
https://purl.stanford.edu/ys277xx1104

© 2020 All Rights Reserved@FranckPachot

Normalization... How

6

Forget about normal forms...

● Separate the business concepts that can be queried / updated

independently in your system (*)

● Group into same table those that are tightly linked

(*) Example: Address + ZIP code + City + Country
- may be attributes of same entity in social media application
- is probably normalized to multiple tables in a Post Office application

© 2020 All Rights Reserved@FranckPachot

Denormalization... When

7

● Want a simple data structure, that will not evolve
👉 microservice with one use case only

● Got the impression that "Joins don't scale"
👉 pre-join data for the main use-case

● Use more cheap storage? 😂
No! You will need more indexes and foreign keys on a normalized data model

© 2020 All Rights Reserved@FranckPachot

Ok, enough theory... facts and examples

8

Let's build a messenger, with tags and groups

- a post from a user, with content, at timestamp

- it has a list of tag_id and a list of group_ids

Access patterns:

- put a post into the database, with all related information

- get posts by tag, ordered by last timestamp

- get posts by group, ordered by last timestamp

© 2020 All Rights Reserved@FranckPachot

Relational design: Entities and Relationships

9

Let's build a messenger, with tags and groups

- a post from a user, with content, at timestamp

- it has a list of tag_id and a list of group_ids

Primary keys: user_id, tag_id, group_id, post_id

we will not detail reference tables here (users, tags, groups)
To record a post, we need the following tables:

- "posts" records (post_id) -> user_id, content, timestamp

- "post_tags" lists (tag_id, post_id)

- "post_groups" lists (group_id, post_id)

© 2020 All Rights Reserved@FranckPachot

Relational design: Heap tables and B-Tree indexes

10

Get post by tag:

- index tag_id -> table post_tags tid
- table post_tags tid -> (post_id, tag_id)

- index post_id -> table posts tid
- table posts tid -> (post_id, user_id, content, timestamp)

To record a post, we need the following tables:

- posts to record (post_id) -> user_id, content, timestamp

- post_tags to list (tag_id, post_id)

- post_groups to list (group_id, post_id)

https://excalidraw.com/#json=bUiy0EOKntFKpgSf0dlIy,Vl_6mnonEa0ghM_B7bLG4A

© 2020 All Rights Reserved@FranckPachot

Relational design: Index Organized Tables (LSM Trees)

11

Get post by tag:

- primary index on post_tags tag_id -> post_id

- primary index on posts post_id -> (post, user_id, content, timestamp)

To record a post, we need the following tables:

- posts to record (post_id) -> user_id, content, timestamp

- post_tags to list (tag_id, post_id)

- post_groups to list (group_id, post_id)

https://excalidraw.com/#json=ijRJdtN0jgQQoaqh9cR4u,9OWnWC-7ZSk3ecZQ0HNztA

© 2020 All Rights Reserved@FranckPachot

Single Table design: ARRAY

12

Do you need so many tables?

- (post_id, tag_id)&(post_id, group_id) can be stored as with each post_id

as (post_id) -> array of post_id's, array of group_id's

- but only if you can still lookup by tag_id and group_id

To record a post, we need the following tables:

- posts to record (post_id) -> user_id, content, timestamp

- post_tags to list (tag_id, post_id)

- post_groups to list (group_id, post_id)

https://excalidraw.com/#json=UQuAFkJc1TGE0cFnbV3Th,jaInp-2LPjrM3VSzdcMWLQ

© 2020 All Rights Reserved@FranckPachot

Single Table design: ARRAY

13

Do you need so many tables?

- (post_id, tag_id) & (post_id, tag_id) can be stored with each post_id

as (post_id) -> array of post_id's, array of group_id's

- but only if you can still lookup by tag_id and group_id

table (post_id,user_id, content, timestamp, int[] group_ids , int[] tag_ids)

- index on posts using gin (group_ids)

- index on posts using gin (tag_ids)

https://excalidraw.com/#json=UQuAFkJc1TGE0cFnbV3Th,jaInp-2LPjrM3VSzdcMWLQ

© 2020 All Rights Reserved@FranckPachot

ARRAY.... or JSON?

14

Do you need so many tables?

- (post_id, tag_id) & (post_id, tag_id) can be stored with each post_id

as (post_id) -> array of post_id's, array of group_id's

- but only if you can still lookup by tag_id and group_id

This can also be JSONB (and GIN index)
 {
 tags: [tag1, tag2, ...],
 groups: [group1, group2, ...]
 }

© 2020 All Rights Reserved@FranckPachot

Finally... it is not very different

15

If tables are stored in the index structure (like YugabyteDB LSM tree)

👉 a GIN index references the row via the PK (hash)

🤔 like association table in a normalized model with FK

If tables are stored in heap tables (like PostgreSQL B-Tree)

👉 The GIN index references the row (tid)

🤔 faster than an association table?

 Index Only Scan, Heap with Bitmap Scan optimizes the index-to-heap

© 2020 All Rights Reserved@FranckPachot 16

Takeout

we have the choice: Table, ARRAY, JSONB

🤔 data integrity, performance, evolution

you must understand the access patterns

and think tables and indexes in the same way

© 2020 All Rights Reserved@FranckPachot

Let's get a a bit more complex: demo

17

Access patterns:

- put a post into the database, with all related information

- get posts by tag, ordered by last timestamp
- get posts by group, ordered by last timestamp

GIN + B-Tree (btree_gin extension)

custom table maintained by trigger

https://dev.to/yugabyte/triggers-stored-procedures-for-pure-data-integrity-logic-and-performance-1eh8

https://dev.to/yugabyte/triggers-stored-procedures-for-pure-data-integrity-logic-and-performance-1eh8

© 2020 All Rights Reserved@FranckPachot 18

Join us on Slack:

www.yugabyte.com/slack

Star us on GitHub:

github.com/yugabyte/yugabyte-db

fpachot@yugabyte.com

dev.to/FranckPachot

@FranckPachot

http://www.yugabyte.com/slack

